Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

John Crabb Laboratory

❮Ophthalmic Research John Crabb Laboratory
  • John Crabb Laboratory
  • Principal Investigator
  • Research
  • Our Team
  • Publications
  • Careers

Principal Investigator

John Crabb, PhD

Staff
Email: [email protected]
Location: Cleveland Clinic Main Campus

Research


Biography


Education & Professional Highlights

Research

Research

Goals and Projects

  • The long-term goal of our uveal melanoma project is the development of a multi-antibody immunological assay for UM metastasis that will complement current cytogenetic and genetic prognostic methods and establish for the first time methods to detect and quantify circulating uveal melanoma tumor cells.
  • The long-term goals of our glaucoma projects are to better understand the molecular mechanisms of glaucomatous vision loss, identify therapeutic targets and develop a panel of blood-borne glaucoma biomarkers.
  • The long-term goal of our age-related macular degeneration (AMD) project is the development of molecular technology for assessing AMD risk and monitoring AMD therapeutics.

Our Team

Our Team

Publications

Selected Publications

View publications for John Crabb, PhD
(Disclaimer: This search is powered by PubMed, a service of the U.S. National Library of Medicine. PubMed is a third-party website with no affiliation with Cleveland Clinic.)


Crabb, JW, M Miyagi, X Gu, K Shadrach, KA West, H Sakaguchi, M Kamei, A Hasan, L Yan, ME Rayborn, RG Salomon, JG Hollyfield (2002) Drusen Proteome Analysis: an Approach to the Etiology of Age-Related Macular Degeneration Proc Natl Acad Sci USA 99:14682-14687.

Miyagi M, H Sakaguchi, RM Darrow, L Yan, KA West, KS Aulak, DJ Stuehr, JG Hollyfield, DT Organisciak and JW Crabb (2002) Evidence that Light Modulates Protein Nitration in Rat Retina. Molecular and Cellular Proteomics 1: 293-303.

Golovleva I, S Bhattacharya, Z.Wu, N Shaw, Y Yang, K Andrabi, KA West , MS Burstedt, K Forsman, G Holmgren, O Sandgren, N Noy , J Qin and JW.Crabb (2003) Disease Causing Mutations in the Cellular Retinaldehyde-binding Protein Tighten as well as Abolish Retinoid Interactions. J Biol Chem 278: 12397-12402.

Bhattacharya SK, EJ Rockwood, SD Smith, VL Bonilha, JS Crabb, RW Kuchtey, NG Robertson, NS Peachey, CC Morton and JW Crabb(2005) Proteomics Reveals Cochlin Deposits Associated With Glaucomatous Trabecular Meshwork. J Biol Chem 280: 6080 – 6084.

EbrahemQ, K Renganathan, J Sears, A Vasanji,  X Gu, L Lu, RG Salomon,  JW Crabb, B Anand-Apte (2006) Carboxyethylpyrrole Oxidative Protein Modifications Stimulate Neovascularization: Implications for Age-Related Macular Degeneration Proc Nal Acad Sci USA 103: 13480-13484

Gu J, GJT Pauer, X Yue, U Narendra, GM Sturgill, J Bena, X Gu, NS Peachey,  RG Salomon, SA Hagstrom, W Crabb and the Clinical Genomic and Proteomic AMD Study Group (2009) Assessing Susceptibility To Age-Related Macular Degeneration With Proteomic And Genomic Biomarkers.  Mol & Cell Proteomics 8:1338-49.

Ni J, X Yuan, J Gu, X Yue, X Gu, RH Nagaraj, JW Crabb and The Clinical Genomic and Proteomic AMD Study Group (2009) Plasma Protein Pentosidine And Carboxymethyllysine, Biomarkers For Age-Related Macular Degeneration. Mol & Cell Proteomics 8: 1921-33.

Yuan X, X Gu, JS Crabb, X Yue, K Shadrach, JG Hollyfield and JW Crabb (2010) Quantitative Proteomics: Comparison of the Macular Bruch’s Membrane/Choroid Complex from Age-related Macular Degeneration and Normal Eyes. Mol & Cell Proteomics 9: 1031-1046.

Bollinger KE, Crabb JS, Yuan X, Putliwala T, Clark AF, Crabb JW (2011) Quantitative Proteomics: TGFβ2-Signaling in Trabecular Meshwork Cells. Invest Ophthal Visual Sci 52, 8287-8291. 

Bollinger KE, Crabb JS, Yuan X, Putliwala T, Clark AF, Crabb JW (2012) Proteomic Similarities in Steroid Responsiveness In Normal and Glaucomatous Trabecular Meshwork Cells.  Mol Vision 18: 2001-2011.

Renganathan K, J Gu, ME Rayborn, JS Crabb, RG Salomon, RJ Collier, MA Kapin, C Romano, JG Hollyfield, and JW Crabb (2013) CEP Biomarkers As Potential Tools for Monitoring Therapeutics, PLoS One 8:e76325.

Gu X, Hu Z, Ebrahem Q, Crabb JS, Mahfouz R, Radivoyevitch T, Crabb JW, Saunthararajah Y. (2014) Runx1 Regulation of Pu.1 Corepressor/Coactivator Exchange Identifies Specific Molecular Targets for Leukemia Differentiation Therapy. J Biol Chem 289: 14881-95. 

Kim YW, Yakubenko VP, West XZ, Gugiu GB, Kutralanathan R, Biswas S, Gao D, Crabb JW, Salomon RG, Podrez E, Byzova T (2015) Receptor-Mediated Mechanism Controlling Tissue Levels of Bioactive Lipid Oxidation Products. Circ Res 117: 321-332. 

Crabb JW, Hu B, Crabb JS, Triozzi P, Saunthararajah Y, Tubbs R, Singh AD (2015) iTRAQ Quantitative Proteomic Comparison of Metastatic and Non-Metastatic Uveal Melanoma Tumors.  PLoS ONE 10: e0135543.  

Tayou J, Wang Q, Jang GF, Pronin AN, Orlandi C, Martemyanov KA, Crabb JW, Slepak VZ (2016) Regulator of G-protein Signaling 7 (RGS7) can exist in a homo-oligomeric form that is regulated by Gαo and R7-binding protein. J Biol Chem 291, 9133-47

Careers

Careers

Training at Lerner Research Institute

Our education and training programs offer hands-on experience at one of the nationʼs top hospitals. Travel, publish in high impact journals and collaborate with investigators to solve real-world biomedical research questions.

Learn More

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute