Cleveland Clinic Lerner Research Institute Logo
Cleveland Clinic Lerner Research Institute Logo
  • About
  • Science
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • Ohio
      3D Printing Bioimage AnalysisBioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering
      Flow CytometryGenomic Medicine Institute Biorepository Genomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & Administrative Engagement & Belonging
  • Donate
  • Contact
  • About
  • Science
    • Scientific Programs
    • Laboratories
    • Office of Research Development
    • Clinical & Translational Research
      Participating in Research
    • Departments
      Biomedical Engineering Cancer Biology Cardiovascular & Metabolic Sciences Florida Research & Innovation Center Genomic Medicine Immunotherapy & Precision Immuno-Oncology
      Infection Biology Inflammation & Immunity Neurosciences Ophthalmic Research Quantitative Health Sciences Translational Hematology & Oncology Research
    • Centers & Programs
      Advanced Musculoskeletal Imaging Angiogenesis Center Cardiovascular Diagnostics & Prevention Computational Life Sciences Consortium for Pain Genitourinary Malignancies Research Genome Center
      Microbiome & Human Health Musculoskeletal Research Northern Ohio Alcohol Center Pathogen & Human Health Research Populations Health Research Quantitative Metabolic Research Therapeutics Discovery
  • Core Services
    • All Cores
    • Ohio
      3D Printing Bioimage Analysis BioRobotics & Mechanical Testing Cell Culture Cleveland Clinic BioRepository Computational Oncology Platform Computing Services Discovery Lab Electron Microscopy Electronics Engineering >
      Flow CytometryGenomic Medicine Institute BiorepositoryGenomics Glassware Histology Hybridoma Immunohistochemistry Immunomonitoring Lab Instrument Refurbishing & Repair Laboratory Diagnostic
      Lerner Research Institute BioRepository Light MicroscopyMechanical Prototyping Microbial Culturing & Engineering Microbial Sequencing & Analytics Resources Media Preparation Molecular Biotechnology Nitinol Polymer Proteomics & Metabolomics Therapeutics Discovery
    • Florida
      Bioinformatics
      Flow Cytometry
      Imaging
  • Education & Training
    • Research Education & Training Center
    • Graduate Programs Molecular Medicine PhD Program Postdoctoral Program
      Research Intensive Summer Experience (RISE) Undergraduate & High School Programs
  • News
  • Careers
    • Faculty Positions Research Associate & Project Staff Postdoctoral Positions Technical & AdministrativeEngagement & Belonging
  • Donate
  • Contact
  • Search

Research News

❮News New Oxygen-Sensing Molecule Implicated in Cancer Development

04/15/2019

New Oxygen-Sensing Molecule Implicated in Cancer Development

The newly identified molecule senses oxygen within cells, altering pathways.

illustration of KDM6A molecule and how it works

In an article published in the March 15 issue of Science, Abhishek Chakraborty, PhD, a new recruit in the Department of Cancer Biology, describes a newly identified oxygen-sensing pathway that may affect the development of cancer.

Dr. Chakraborty and colleagues from Dana-Farber Cancer Institute/Harvard Medical School, his previous institution, and their collaborators at the University of Oulu, Finland, discovered that an enzyme called KDM6A can sense oxygen within cells and alter biological pathways in response to oxygen levels.

Importantly, these changes occur independently of the widely studied hypoxia inducible factor, which historically has been considered the primary defense agent against oxygen loss.

 

KDMA6A shown with different oxygen levels

Dr. Chakraborty’s team uncovered that under hypoxic conditions, loss of KDM6A induces chemical changes, called hypermethylation, to chromatin (complex of genetic materials and proteins found inside cells). In this way, KDM6A can act as an epigenetic regulator of cellular changes, including some that are central to cancer development. These paradigm-shifting findings suggest that studying KDM6A and related oxygen-sensitive enzymes may reveal new lines of anti-cancer therapy to pursue in the future.

These studies were performed in vitro in human muscle and breast cancer cells and supported by observations in preclinical and human tumors.

An expert in oxygen-sensing and kidney cancer research, Dr. Chakraborty was recruited from Harvard University to join the Center for Genitourinary Malignancies Research.

Top: Structural alignment of KDM6A and KDM6B to identify non-conserved residues that are relevant for KDM6A's oxygen sensitivity.

Bottom: C2C12 myotube differentiation assay performed by culturing cells at the indicated oxygen concentrations. Cells are stained to compare expression of the muscle marker MyHC in green.

Featured Experts
Abhishek Chakraborty Headshot
Abhishek
Chakraborty, PhD
News Category
Related News
New Grant to Improve Drug Delivery in Triple Negative Breast CancerHow Cancer Stem Cells Drive Triple-Negative Breast CancerDecades of Research Bring New Understanding of Integrin linked kinase (ILK)

Research areas

Cancer Biology

Want To Support Ground-Breaking Research at Cleveland Clinic?

Discover how you can help Cleveland Clinic save lives and continue to lead the transformation of healthcare.

Give to Cleveland Clinic

Subscribe to get the latest research news in your inbox.

About Lerner

About Us Careers Contact Us Donate People Directory

Science

Clinical & Translational Research Core Services Departments, Centers & Programs Laboratories Research News

Education & Training

Graduate Programs Molecular Medicine PhD Program Postdoctoral Program RISE Program Undergraduate & High School Programs

Site Information & Policies

Search Site Site Map Privacy Policy Social Media Policy

9500 Euclid Avenue, Cleveland, Ohio 44195 | © 2025 Lerner Research Institute